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Abstract. We study the one-dimensional isotropic spin-1 Heisenberg magnet with antiferromagnetic
nearest-neighbor (nn) and next-nearest-neighbor (nnn) interactions by using the modified spin wave the-
ory (MSWT). The ground state energy and the singlet-triplet energy gap are obtained for several values
of j, defined as the ratio of the nnn interaction constant to the nn one. We also compare two different
ways of implementing the MSWT currently found in the literature, and show that, despite the remarkable
differences between the equations to be solved in each procedure, the results given by both are equivalent,
except for the predicted value of the jmax, the maximum value of j accessible in each treatment. Here, we
suggest that jmax is related to the disorder point of the first kind. Our results show that the ground state
and the gap energies increase with j, for j ≤ jmax, in accordance to previous numerical results.

PACS. 75.10.Jm Quantized spin models – 75.10.Pq Spin chain models – 75.30.Ds Spin waves – 75.50.Ee
Antiferromagnetics

1 Introduction

In the last two decades, the physics of low dimensional
magnets has continuously revealed many interesting and
unexpected behavior stimulating a great number of the-
oretical, numerical, and experimental studies in the area.
Among the systems that have deserved attention for their
rich behavior are those with frustration which, many
times, cannot be treated by conventional techniques. Con-
cerning antiferromagnetic systems, our interest in this
work, frustration tends to suppress antiferromagnetic cor-
relations and, thus, the tendency towards Néel order.
Therefore, the ground state of classical systems is of the
Néel type only for small frustration; as the frustration
is enhanced, the ground state exhibits an helical ordered
state. In quantum systems, the interplay of frustration and
quantum fluctuations may lead to a spin-liquid state or to
some kind of spontaneous symmetry breaking.

The Heisenberg isotropic quantum spin chain with
antiferromagnetic interactions between nearest (nn) and
next-nearest neighbors (nnn) is one of the simplest quan-
tum frustrated systems and, therefore, it is of prime im-
portance. The model is described by the Hamiltonian

H = J1

∑

l

Sl · Sl+1 + J2

∑

l

Sl · Sl+2, (1)
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where Sl is a spin-S operator at site l, J1 are J2 are,
respectively, the antiferromagnetic nn and nnn coupling
constants. Hereafter, we will use j = J2/J1. It is now very
well known that, in the limit of no frustration (j = 0),
there is a fundamental difference between half-integer and
integer spin chains; the so-called Haldane’s conjecture [1].
For integer spin values, the model exhibits a non-magnetic
singlet ground state well separated from the first excited
triplet state by an energy gap ∆, whereas the excitation
spectrum is gapless for half-odd-integer spin values.

Therefore, it is natural to expect different behavior
for frustrated chains involving integer or half-odd-integer
spins. The case of half-integer spin chains has been exten-
sively studied and is by now very well understood [2]: the
ground state is in the spin-fluid phase or in the dimer-
phase [3,4] depending on whether j is smaller or larger
than a critical value jc ≈ 0.241 [5,6]. Frustrated isotropic
Heisenberg chains with integer spin have also attracted
considerable interest. The ground state properties of the
spin-1 frustrated chain were numerically investigated by
Tonegawa et al. [7] and the phase diagram of this model
has been the subject of many numerical and theoretical
works. In the range of j-values investigated by Tonegawa
et al. [7], it was found that the ground state energy and the
singlet-triplet gap increase with j, at least for j < 0.40.
The existence of a gap ∆ for any value of j is predicted
by field theoretical studies [8,9] but its behavior as a
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function of j is not a monotonically increasing function,
as shown in references [10,11]. Using a variational ansatz
starting from valence bond states and the density-matrix
renormalization group, Kolezhuk et al. [12] explained the
phase diagram of the model as follows: there is a disorder
point at jD = 0.284 marking the onset of incommensurate
spin-spin correlations in the chain, and a Lifshitz point at
jL = 0.3725 where the excitation spectrum develops a
doubly degenerate structure. The Haldane phase, charac-
terized by the so called string order [13], breaks down at
jT = 0.7446. This transition was first interpreted [12] as a
decoupling of a single Haldane chain into two subchains,
and the order parameter of the large j-phase was later
identified as describing two intertwined strings [11]. The
transition has then a topological nature.

In this paper, we study the frustrated antiferromag-
net with S = 1 described by Hamiltonian (1) by us-
ing the modified spin wave theory (MSWT). The MSWT
was first proposed by Takahashi [14] to describe the low
temperature properties of 1D and 2D Heisenberg fer-
romagnets. Imposing the conditions of free-energy min-
imum and zero magnetization, the MSWT results for
S = 1/2 were in excellent agreement with those of Bethe-
Ansatz integral equations. Later, Hirsch and Tang [15] and
Takahashi [16], independently, formulated the MSWT for
the two-dimensional antiferromagnetic Heisenberg model
without frustration imposing the restriction of zero sub-
lattice magnetization, analogously to what had been done
for the ferromagnet. Again, the MSWT results obtained
for the S = 1/2 antiferromagnetic 2D Heisenberg model
were found to be in excellent agreement with the results
of exact diagonalization [17] and renormalization-group
theory [18]. It is important to remark that the MSWT
results are also in agreement with the ones obtained via
the Schwinger boson theory, as discussed by Arovas and
Auerbach [19].

The MSWT theory was also extended to the 2D frus-
trated Heisenberg model [20] in order to give the phase
diagram of this model. Some of us [21] applied the method
to the non-frustrated one-dimensional (1D) Heisenberg
model to obtain the dependence of the normalized gap,
that is, the ratio between the gap at temperature T ,
∆(T ), to the gap at T = 0, ∆0, as a function of the nor-
malized temperature t = T/∆0 The results so obtained
were compared to experimental data and the agreement
is reasonable. More recently, Yamamoto [22] presented a
slightly different version of the MSWT for the same 1D
non-frustra-ted Heisenberg model and, again, obtained the
behavior of the normalized gap as a function of t.

The theories used in references [21] and [22] are iden-
tical in the sense that they both start by writing the
spin operators in terms of Bose operators obtaining a
Hamiltonian involving products of two and four opera-
tors. After some manipulations, the free energy is min-
imized under the restriction of zero sublattice magneti-
zation. However, the procedures used for diagonalizing
the transformed Hamiltonian are different and lead to
remarkably different systems of equations to be solved.
The procedure adopted in [21] followed the one sug-

gested by Takahashi [16] and introduces an ideal spin-wave
density matrix (SWDM) after a Bogoliubov transforma-
tion: hereafter, we will refer to this procedure as SWDM.
Yamamoto [22] reduces the terms involving four operators
to products of only two operators by using standard com-
mutation relations, and, then, diagonalizes the resulting
Hamiltonian imposing the coefficient of the crossed term
to be zero. He calls this scheme full diagonalization inter-
acting modified spin-wave and, for brevity, we will refer to
it here as FD (full diagonalization).

The MSWT-FD results were used [23] to explain the
nuclear magnetic relaxation in the Haldane gap antifer-
romagnet Ni(C2H8N2)2NO2(ClO4) (NENP). Taking into
account that the MSWT is a simple analytical theory that
has successfully been applied to describe properties of low-
dimensional magnets, we apply this theory to study some
properties of Hamiltonian (1) and compare our results to
some numerical and experimental results available in the
literature. Another task of this work is to compare the dif-
ferent schemes used in the MSWT context. Therefore, we
compare the results obtained for Hamiltonian (1), non-
frustrated (j = 0) and frustrated, by using the SWDM
and FD approaches to the MSWT.

2 The modified spin-wave theory

We start by rewriting Hamiltonian (1) assuming that the
lattice is bipartite and divided in sublattices A and B:
spins in sublattice A are denoted as T2l while those in
sublattice B are S2l+1. Then, the model Hamiltonian is
given by

H = J1

∑

l

{[
T2l · S2l+1 + S2l+1 · T2l+2

]

+ j

[
T2l · T2l+2 + S2l+1 · S2l+3

]}
, (2)

where the sum runs over all l lattice sites, and j = J2/J1

is the ratio between the nnn and nn exchange interactions.
Next, we define bosonic operators, a and b, for the spin
deviation in each sublattice through the Dyson-Maleev
transformation

T z
2l = S − a†

2la2l; T−
2l = a†

2l; T †
2l = (2S − a†

2la2l)a2l,

Sz
2l+1 = −S + b†2l+1b2l+1; S−

2l+1 = −b2l+1;

S†
2l+1 = −b†2l+1(2S − b†2l+1b2l+1). (3)

In the Dyson-Maleev transformation, the Hamiltonian (1)
has no term higher than the fourth order, and we can
construct a self-consistent theory instead of a conventional
1/S expansion. In terms of these bosonic operators, the
Hamiltonian has now the form

H = E0 + H0 + H1, (4)

where E0 = −2J1NS2(1−j) and N is the number of spins
in each sublattice. H0 and H1 represent the terms in the
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Hamiltonian involving, respectively, products of two and
four bosonic operators and are given by

H0 = J1S
∑

l

{
2b†2l+1b2l+1 + 2a†

2la2l − (a2l + a2l+2)b2l+1

− (a†
2l + a†

2l+2)b
†
2l+1 − j

[
(a†

2l+2 − a†
2l)(a2l+2 − a2l)

+ (b†2l+1 − b†2l+3)(b2l+1 − b2l+3)
]}

. (5)

and

H1 =
J1

2

∑

l

{
a†
2l(b

†
2l+1 − a2l)2b2l+1

+ a†
2l+2(b

†
2l+1 − a2l+2)2b2l+1 − j

[
a†
2la

†
2l+2(a2l − a2l+2)2

+ (b†2l+1 − b†2l+3)
2b2l+1b2l+3

]}
. (6)

2.1 The SWDM scheme

Next, in the SWDM formulation for the MSWT, the ideal
spin-wave density matrix

ρ = exp

(
1
T

∑

k

εk

{
α†

kαk + β†
kβk

})
, (7)

is introduced with the Bogoliubov transformation

αk = cosh θk ak − sinh θk b†−k

β†
k = cosh θk b†−k − sinh θk ak. (8)

In (7),
∑

k means the sum over the half of the first
Brillouin zone, and, in (8), ak and b†−k are the Fourier-
transformed operators

ak =
1√
N

∑

l

a2le
ik(2l−1/2),

b†−k =
1√
N

∑

l

b†2l+1e
−ik(2l+1/2), (9)

where the lattice constant a was set equal to unit.
Then, we can evaluate the terms of the density matrix

obtaining for the non-null terms

〈b†2l+1b2l′+1〉 = f(r2l+1 − r2l′+1) −
1
2
δl,l′ , (10)

〈a†
2la2l′ 〉 = f(r2l − r2l′ ) −

1
2
δl,l′ , (11)

〈a2lb2l′+1〉 = 〈a†
2lb

†
2l′+1

〉 = g(r2l − r2l′+1). (12)

where we have used the definitions,

f(r2l − r2l′ ) = f(r2l+1 − r2l′+1)

=
1

2N

∑

k

eik(2l−2l
′
)φk cosh 2θk, (13)

g(r2l − r2l′+1) =
1

2N

∑

k

eik(2l−2l
′−1)φk sinh 2θk, (14)

nk = 〈α†
kαk〉 = 〈β†

kβk〉 = [exp(εk/T )− 1]−1 . (15)

We defined φk = 2nk+1. In order to obtain the energy E =
〈H〉, we decouple the four operator terms in H1 according
to the following example,

〈a†
2lb

†
2l+1b

†
2l+1b2l+1〉 = 2〈a†

2lb
†
2l+1〉〈b†2l+1b2l+1〉

+〈a†
2lb2l+1〉〈b†2l+1b

†
2l+1〉. (16)

The energy E is then given as

E = −2NJ1

{[
S −

(
f(0) − 1

2
− g(δ)

)]2

− j

[
S −

(
f(0) − 1

2
− f(2δ)

)]2}
, (17)

where δ is a vector between nn sites. Following the steps
in [16], we minimize the free-energy F under the condition
of zero site magnetization,

〈T z
2l〉 = 〈Sz

2l+1〉 = S +
1
2
− f(0), (18)

obtaining

tanh 2θk =
η cos k

1 − Γ sin2 k
, (19)

and
εk = λ

√
(1 − Γ sin2 k)2 − η2 cos2 k, (20)

where

λ = 2J1g(δ) − µ, (21)

η =
2J1g(δ)

λ
, (22)

Γ =
4jJ1f(2δ)

λ
. (23)

In the equations above, µ is the Lagrange multiplier used
in the minimization of F under restriction (18). Notice
that Γ is the parameter introduced when the nnn interac-
tion is taken into account.

The εk can be obtained after the parameters λ, Γ , and
η are known. These parameters are obtaining by solving
the following set of self-consistent equations

2S + 1 =
λ

N

∑

k

1 − Γ sin2 k

εk
coth

( εk

2T

)
, (24)

ηλ

2J1
=

λ

2N

∑

k

η cos2 k

εk
coth

( εk

2T

)
, (25)

Γλ

4J1
=

λj

2N

∑

k

cos 2k(1 − Γ sin2 k)
εk

coth
( εk

2T

)
.(26)

These equations were solved for several values of j, includ-
ing j = 0, and the results will be discussed in Section 3. As
will be discussed later, the solution of this set of equations
gives η < 1 for any temperature and j value investigated.
Therefore, from (20), we conclude that the MSWT theory
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predicts a gap (εk=0 �= 0) for the frustrated Heisenberg
model and, in this respect, is in accordance to previous
field theoretical studies [8,9]. A naive inspection of equa-
tion (20) may lead to the conclusion that the gap does
not depend on the nnn interaction. It has to be remarked,
however, that the values of the λ and η parameters are
determined self-consistently and depend on Γ .

2.2 The FD scheme

Here, we apply the Bogoliubov and Fourier transforma-
tions defined, respectively, in (8) and (9) to Hamiltonians
H0 and H1. The expression obtained for H0 is found to be

H0 = E1 + J1

∑

k

{
ω0

k

(
α†

kαk + β†
kβk

)

+ γ0
k

(
α†

kβ†
k + αkβk

)}
, (27)

where

E1 = 4J1SN [(1 − j)Γ1 − Γ2 + jΓ3] (28)

ω0
k = 2S(1 − 2j sin2 k) cosh 2θk − 2S cos k sinh 2θk, (29)

γ0
k = 2S cos k cosh 2θk − 2S(1 − 2j sin2 k) sinh 2θk. (30)

Notice that, here, the crossed terms like α†
kβ†

k are still
present (compare with Eq. (7)). E1 represents a first cor-
rection to the ground state energy and requires the fol-
lowing definitions,

Γ1 =
1

2N

∑

k

(cosh 2θk − 1) , (31)

Γ2 =
1

2N

∑

k

cos k sinh 2θk, (32)

Γ3 =
1

2N

∑

k

cos 2k cosh 2θk. (33)

The Wick theorem is applied to Hamiltonian H1 leading to

H1 = E2 − J1

∑

k

{
ω1

k

(
α†

kαk + β†
kβk

)

−γ1
k

(
α†

kβ†
k + αkβk

)}
, (34)

where

E2 = −2J1N (Γ1 − Γ2)
2 + 2jJ1N (Γ1 − Γ3)

2
, (35)

ω1
k = 2Γ1 cosh 2θk + 2Γ2 cos k sinh 2θk − 2Γ1 cos k sinh 2θk

−2Γ2 cosh 2θk − 4j(Γ1 − Γ3) sin2 k cosh 2θk, (36)
γ1

k = 2Γ1 sinh 2θk + 2Γ2 cos k cosh 2θk − 2Γ1 cos k cosh 2θk

−2Γ2 sinh 2θk − 4j(Γ1 − Γ3) sin2 k sinh 2θk. (37)

The correction to the ground state energy due to H1 is
given by E2.

As before, the free energy is minimized under the con-
straint of zero sublattice magnetization which, here, is
written as

∑

l

a†
2la2l =

∑

l

b†2l+1b2l+1 = SN (38)

which, obviously, is equivalent to (18). A Lagrange mul-
tipier λFD is introduced leading to a new Hamiltonian H̃
given by

H̃ = H + 2J1(1 − j)λFD

∑

k

{
2 sinh2 θk + cosh 2θk(α†

kαk

+β†
kβk) − sinh 2θk(α†

kβ†
k + αkβk)

}
(39)

and the whole expression for H̃ is diagonalized. The diag-
onalization of H̃ gives the expression for the θk parameter
in the Bogoliubov transformation

tanh 2θk =
cos k[S + Γ2 − Γ1]

τ
, (40)

where

τ = S(1 − 2j sin2 k) + λFD(1 − j)
−Γ1 + Γ2 + 2j(Γ1 − Γ3) sin2 k.

Putting together the transformed expressions for H0 and
H1, we obtain the ground-state energy and the dispersion
relation as

EGS = E0 + E1 + E2 + 4J1λFDN(1 − j)Γ1, (41)
ω(k) = ω0

k − ω1
k + 2λFD(1 − j) cosh 2θk. (42)

Once θk is given, we calculate the free energy and ob-
tain the optimum thermal distribution function as given
by (15). The Lagrange multipier, λFD is self-consistently
determined by the condition

2S + 1 =
1
N

∑

k

(2nk + 1) cosh 2θk, (43)

where nk is the usual boson occupation number. Thus, the
FD scheme requires four parameters, λFD, Γ1, Γ2, and Γ3

to be self consistently solved.

3 Results

We start by comparing the SWDM and FD results for the
non-frustrated Heisenberg model because there are more
data — theoretical and experimental — available for this
system. The MSWT is not a large-spin expansion method,
and, thus, we can expect that it can be applied to models
with small spin value. In this work, we will consider only
the spin S = 1 case.
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Table 1. Ground state energy, EGS, and gap at zero temper-
ature, ∆0.

EGS ∆0

SWDM −1.49014 0.08506
FD −1.39461 0.08523
QMC −1.401481(4) 0.41048(6)
DMRG −1.401484038971(4) 0.41050(2)
ED −1.401485(2) 0.41049(2)

3.1 The non-frustrated 1D Heisenberg model

The Haldane’s conjecture [1] that 1D spin-1 Heisenberg
antiferromagnets should exhibit an energy gap imme-
diately above the ground state was confirmed experi-
mentally in quasi-1D Heisenberg antiferromagnets as the
Ni(C2H8N2)2NO2(ClO4) [24], Y2BaNiO5 [25], and Ni(C3

H10N2)2N3(ClO4) [26]. A large number of investigations
— numerical, analytical and experimental — were de-
voted to studying the properties of the 1D Heisenberg
model. Numerical methods as density matrix renormaliza-
tion group, quantum Monte Carlo, and exact diagonaliza-
tion (Lanczos method) have been quite useful in this study
but analytical approaches still play an important role to
the understanding of the peculiarities of the model. From
the analytical point of view, the non-linear σ model tech-
nique [1,27,28] has been one of the most powerful methods
to describe the low-energy structure of the model and the
valence-bond description [29] of integer-spin chains was
of crucial importance to the understanding of the hidden
order in the Haldane massive phase. However, these ana-
lytical methods have some limitations and cannot be used,
for example, to study the thermodynamic behavior of the
model. In this context, as pointed out by some of us [21]
and Yamamoto and Hori [22], the MSWT has been quite
successfull.

In Table 1, we present results for the ground-state
energy, EGS , as calculated via the FD and SWDM ap-
proaches and compare these data to numerical estimates
obtained by using quantum Monte-Carlo [30] (QMC), den-
sity-matrix renormalization-group [31] (DMRG), and ex-
act diagonalization [32] (ED) techniques. We observe that
the FD estimate for EGS is slightly closer to the numerical
estimates than the SWDM. The third column of Table 1
gives the SWDM and FD estimates for the gap at zero
temperature, ∆0: these values are very close to each other
but are, both, quite smaller than the numerical estimates.
We must emphasize however that, up to the present mo-
ment, no other analytical approach is able to really predict
the magnitude of ∆0 as a function of microscopic param-
eters. Usually, what is obtained is a set of expressions for
finite temperatures involving ratios such as T/∆0. There-
fore, in order to compare the theoretical prediction for the
temperature dependence of the gap to numerical and/or
experimental data, it became usual to compare the be-
havior of the ratio of the gap evaluated at temperature T ,
∆(T ), to the zero temperature gap, ∆0, as a function of
T/∆0, as shown in Figure 1. In that figure, the continu-
ous and dashed curves correspond, respectively, to the FD

Fig. 1. Normalized gap, ∆(T )/∆0, as a function of the normal-
ized temperature, T/∆0, for j = 0. The MSWT results (contin-
uous and dashed lines) are compared to Monte Carlo data [33],
and experimental data obtained for the Y2BaNiO5 [25] and
NINAZ [26] compounds.

and SWDM results and we see that these two approaches
give essentially the same result for small temperatures.
For T/∆0 > 1.0, the FD estimate becomes slightly smaller
than the SWDM one. Experimental data obtained for the
Y2BaNiO5 [25] and NINAZ [26] compounds and numeri-
cal data obtained via quantum Monte Carlo method com-
bined with the maximum-entropy technique [33] are also
shown in Figure 1.

We see that the FD and SWDM results are in good
agreement with the quantum Monte Carlo data. Con-
cerning the behavior of the of the theoretical curves with
temperature, the comparison to the experimental data is
slightly better for the Y2BaNiO5 compound. The data
for the NINAZ compound [26] show a slower increase of
∆(T )/∆0 with temperature than the result predicted by
the MSWT. It is important to mention that the error bars
(10%) for the Y2BaNiO5 experimental data [25] were not
included in Figure 1 and their inclusion may lead to a
behavior similar to the NINAZ compound. Nevertheless,
it must be remarked that the Y2BaNiO5 compound is
a better realization [25] of the isotropic Hamiltonian (1)
than the NINAZ compound because there exists a larger
anisotropy in this last compound.

Although we are, here, restricting our discussion to the
S = 1 case, it is important to mention that the MSWT
predicts the zero temperature gap to decrease as e−πS :
this result can be obtained by using asymptotic expan-
sions for equations (24) and (25) at T = 0 [19,21]. In
the case of the non-linear σ model, the renormalization
group at weak coupling leads to a very similar result giving
∆0 = CS2 exp(−πS), where C is a multiplicative factor
independent of S. Then, we see that two quite different
theories — MSWT and renormalization group — predict
similar behavior for ∆0 as a function of S.

We conclude this sub-section noticing that the com-
parison between our MSWT results and quantum Monte
Carlo data allows to say that the MSWT is able to de-
scribe the behavior of the normalized gap as a function of
T/∆0 and that the two MSWT approaches investigated
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here give similar/equivalent results in despite of the re-
markable difference in the set of self-consistent equations
obtained in each of them. Yamamoto and Hori [23] used
the FD results to interpret nuclear spin-lattice relaxation-
time (T1) measurements performed on the spin-1 quasi-
1D Heisenberg antiferromagnet Ni(C2H8N2)2NO2(ClO4)
(NENP) and successfully explained the minimum of T−1

1
as a function of an applied field. Considering the equiv-
alence between the FD and SWDM approaches, we can
infer that similar results would be obtained by using the
SWDM scheme.

3.2 The frustrated Heisenberg model

According to the classical spin-wave theory, the ground-
state is Néel-like for J2 = 0. The J2 coupling introduces
frustration into the problem and the Néel-state cannot
be the true ground-state for large J2 values. In the large
J2-region, we can expect that each sublattice has some
kind of spiral alignment, that is, a state that can be ob-
tained from the Néel-state by applying a uniform twist
along the chain direction. In the S → ∞ limit, a classical
treatment shows that the ground-state is in the Néel-phase
for 4J2 < 1, and in a spiral phase for 4J2 > 1. There-
fore, we cannot expect our calculations to be valid for the
whole 0 ≤ j ≤ 1 region because the treatment presented
here departs from the boson transformation defined in (3),
accounting only for small deviations from the Néel order.

The ground-state energy can be obtained from equa-
tions (17) and (41) in the SWDM and FD approaches, re-
spectively. Our results are shown in Figure 2, where they
are compared to the ones obtained numerically by Tone-
gawa et al. [7]. In their work, Tonegawa and co-workers ap-
plied an exact diagonalization method to investigate some
ground-state properties, including the energy and the gap,
for finite size systems of up to 16 sites. The extrapolation
of the results to the N → ∞ limit showed that the results
with N = 16 are sufficient to discuss satisfactorily well
the limiting ground-state properties. Through the analy-
sis of the two-spin correlation function, they [7] see that
this function has a commensurate character for j ≤ 0.38
and an incommensurate character for larger j. Therefore,
they restricted their calculation to the j < 0.40 region, as
can be seen in Figure 2. Notice that our results are in very
good agreement with the ones obtained in reference [7].

However, it can also be seen from Figure 2 that the
FD results (triangles) shown cover only the j < 0.25 re-
gion while the SWDM data (circles) go up to ≈0.30. This
happens because we could not find a solution to the set of
self-consistent equations (31–33) and (43) for j > 0.25 in
the FD approach, and for j > 0.30 (Eqs. (24–26)) in the
SWDM approach. We interpret this failure in finding a so-
lution as the limit of validity for each procedure, suggest-
ing a change in the ground-state structure, as discussed
above. It is interesting to see that, when the solutions to
the system of self-consistent equations can be found, the
results obtained via the two approaches are almost iden-
tical (this equivalence is also observed in the calculation
of the gap energy, as shown in Fig. 3).

Fig. 2. Ground state energy, EGS , as a function of j. The
FD (triangles) and SWDM (circles) results are compared to
numerical data [7] (squares) available in the literature.

Fig. 3. Gap at zero temperature, ∆0, as a function of j ob-
tained from the two MSWT approaches: FD (full losangles)
and SWDM (open circles).

The gap at zero temperature, ∆0, as a function of
the frustration parameter, j, is shown in Figure 3 where
we see that, again, the FD and SWDM approaches give
identical results. It can also be seen that the competi-
tion between the antiferromagnetic nn and nnn interac-
tions stabilizes the gap since ∆0 increases with j. This
result is in qualitative agreement to the one found by
Tonegawa et al. [7]. Another analytical treatment, based
on the bosonization method and the self-consistent har-
monic approximation [34], predicted a gap decreasing with
the increase of j. However, as explained by the authors of
that work, Shimaoka and Kuboki, the difference between
their result and the numerical one [7] can be due to the
fact that the phase diagram obtained in [34] is not accu-
rate enough. The ground-state phase diagram and some
low-energy properties of the 1D frustrated Heisenberg an-
tiferromagnet were also investigated by Pati et al. [10]
and by Kolezhuk et al. [11] by using the density matrix
renormalization group method. Their results for the gap
behavior as a function of j show ∆0 increasing with the
frustration parameter while j is smaller to ≈0.4; for larger
j, the gap decreases up to a point, j = 0.73. Taking into
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Fig. 4. Gap at zero temperature, ∆(T = 0), normalized by
the gap at zero temperature for j = 0, ∆0, as a function of j.
The MSWT results (open triangles → FD, and full circles →
SWDM) are compared to the numerical results obtained by
Tonegawa et al. [7] (full squares).

account that our theory is valid for small j, and that, in
this region, the obtained behavior for the gap as a function
of j qualitatively agrees with the numerical ones [7,10], we
conclude that the MSWT predicts the correct behavior.

In order to compare our results to the numerical ones
obtained in references [7] and [10], we compare the “nor-
malized” gap, that is, the gap obtained for a given j at zero
temperature, divided by the gap for j = 0 at T = 0, ∆0, as
a function of j in Figure 4. The normalization is necessary
because the MSWT estimate for the gap is considerably
smaller than the numerical estimates. As said before, no
analytical procedure can predict the correct value for the
gap in terms of microscopic parameters. Figure 4 shows
that the MSWT results predict the ratio ∆(T = 0)/∆0 to
increase with j much faster than the numerical results.

In Figure 5, we show the behavior of the normalized
gap, for several j values, as a function of the temperature.
In this figure, we present only results obtained from the
SWDM scheme because we can conclude from Figure 4
that the two procedures, FD and SWDM, furnish identi-
cal results. It is interesting to notice that the ∆(T )/∆(0)
increases with T in the same way for all j: in the range
investigated, the degree of frustration, j, does not affect
the dependence of the normalized gap as a function of the
temperature.

The correlation function, 〈Si · Sj〉, is given by

〈Si · Sj〉 = f2(ri − rj) − g2(ri − rj) − 1
4
δi,j , (44)

where f(r) and g(r) are given by equations (13) and (14).
The behavior of |〈Si · Sj〉|, at T = 0, as a function of the
distance between spins in shown in Figure 6: the corre-
lation function decays faster as j increases, as expected.
In fact, we verified that the decay shown in Figure 6 fits
nicely to the function exp(−r/ξ)/

√
r, with the parameter

ξ — to be identified as the correlation length — decreasing
as j increases.

The structure factor, S(q), is given by the Fourier
transform of (44) which for q = 0, the antiferromagnetic

Fig. 5. Gap at temperature T , ∆(T ), normalized by the value
of the gap at zero temperature for each j value, ∆(0), as a
function of the normalized temperature, T/∆(0), for j = 0.00,
0.05, 0.10, and 0.20.

Fig. 6. Correlation function |< S0 ·Sr >|, as a function of the
distance r, for several values of j.

wavevector in our treatment, is

S(0) =
1
N

1
4

∑

k

(1 − Γ sin2 k)2 + η2 cos2 k

(1 − Γ sin2 k)2 − η2 cos2 k
− 1

4
, (45)

and, in the thermodynamic limit, is related to the mean
squared staggered magnetization m by Nm2 = S(0). The
solution of equations (24–26) shows that, as j varies in
the range where solutions were found, η does not vary
appreciably (from 0.999349 for j = 0 to 0.993872 for j =
0.30), while Γ increases approaching the value 0.50 as j →
jmax. It is easy to see that, for Γ → 0.5, equation (45)
becomes small signaling that the long range order will
vanish in this limit. In fact, for Γ = 0.5, equation (24)
does not have a solution, explaining why we could not
solve the set of self-consistent equations for j > jmax.

4 Conclusions

In this work, we used the MSWT to investigate the ground
state energy and the gap of the frustrated 1D antiferro-
magnetic Heisenberg model with S = 1. This model has
attracted the interest of several numerical works that in-
vestigated the low-temperature properties and the phase-
diagram of the model. There are not so many analytical



14 The European Physical Journal B

works dealing with the same model, and, for this reason,
we think it is important to analyse the efficiency of a sim-
ple analytical treatment like the MSWT in describing the
low-temperature behavior of the model.

Our results show that the MSWT gives good estimates
of the ground-state energy and predicts a qualitatively
correct behavior for the gap as a function of the frustration
parameter. However, the gap is found to increase with
j faster than the numerical results predict. Nevertheless,
we must remember that the gap was found to decrease
with j when the bosonization method was applied to the
same model [34]. The simple MSWT can predict a correct
qualitative behavior.

We compared two different procedures to implement
the MSWT; here, we have referred to these approaches
as FD and SWDM. The results given by each recipe are
very similar except for the range of j where the solution
to the set of self-consistent equations generated in each
procedure can be found: in the FD scheme, Jmax = 0.25
while Jmax = 0.30 in the SWDM. However, we repeat
here part of the short review done in the introduction:
Kolezhuk, Roth and Schollwöck [12] identifies a disorder
point at jD = 0.284. This disorder point can arise if a sys-
tem has two different low-temperature phases, e.g., an an-
tiferromagnetically ordered phase and a spiral phase with
a wave number that is, usually, incommensurate. It is also
required that the two phases are linked to the disordered
high-temperature phase by continuous phase transitions.
A similar phase transition exists for the classical frustrated
antiferromagnetic unidimensional Heisenberg model. For
j < jC = 0.25, the chain is antiferromagnetically ordered
while for j > 0.25 there is spiral order with a wavevector
given by q(j) = cos−1(−0.25j). Therefore, we are tempted
to suggest that the failure of the MSWT in solving the self-
consistent equations it generates for j > jmax is somehow
related to this disorder point. The value of jmax found
in the FD approach, 0.25, is quite close to the estimated
jD value [12]. Obviously, this relationship has to be in-
vestigated by analysing, for example, the behavior of the
two-spin correlation function as a function of j. This in-
vestigation is in progress.
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